EEG Temporal-Spatial Transformer for Person Identification

0
  • Soomro, ZA, Shah, MH, and Ahmed, J. Information Security Management Needs a More Holistic Approach: A Literature Review. Int. J.Inf. Managed. 36215-225 (2016).

    Google Scholar article

  • Cappelli, R., Ferrara, M. & Maltoni, D. Minutia cylinder code: A new representation and matching technique for fingerprint recognition. IEEE Trans. Anal model. Mach. Information. 322128-2141 (2010).

    Google Scholar article

  • Maseck, L. et al. Recognition of human iris patterns for biometric identification. Ph.D. thesis, Citeseer (2003).

  • Guillaumin, M., Verbeek, J. & Schmid, C. Is that you? Metric learning approaches for face identification. In 2009 IEEE 12th International Conference on Computer Vision 498–505 (IEEE, 2009).

  • Campisi, P. & La Rocca, D. Brainwaves for automatic user recognition based on biometrics. IEEE Trans. Inf. Forensic security. 9782–800 (2014).

    Google Scholar article

  • Tan, D. & Nijholt, A. Brain-computer interfaces and human-computer interaction. In Brain-computer interfaces (eds Tan, DS & Nijholt, A.) 3–19 (Springer, 2010).

    Google Scholar Chapter

  • Min, B.-K., Marzelli, MJ & Yoo, S.-S. Neuroimaging-based approaches in the brain-computer interface. Biotechnol trends. 28552–560 (2010).

    CAS Google Scholar Article

  • Berkhout, J. & Walter, DO Temporal stability and individual differences in human EEG: analysis of variance of spectral values. IEEE Trans. Biomedical. Eng. 3165–168 (1968).

    Google Scholar article

  • Vogel, F. The genetic basis of the normal human electroencephalogram (EEG). human genetics ten91–114 (1970).

    CAS Google Scholar Article

  • Van Dis, H., Corner, M., Dapper, R., Hanewald, G. & Kok, H. Individual differences in the human electroencephalogram during quiet wakefulness. Electroencephalogram. Clin. Neurophysiol. 4787–94 (1979).

    Google Scholar article

  • Henry, CE Electroencephalographic individual differences and their constancy: I. During sleep. J. Exp. Psychol. 29117 (1941).

    Google Scholar article

  • Henry, CE Electroencephalographic individual differences and their constancy: II. Wake. J. Exp. Psychol. 29236 (1941).

    Google Scholar article

  • Ruiz-Blondet, MV, Jin, Z. & Laszlo, S. Cerebre: A potential new biometric identification method linked to a very high precision event. IEEE Tran. Inf. Forensic security. 111618-1629 (2016).

    Google Scholar article

  • Kong, X., Kong, W., Fan, Q., Zhao, Q., and Cichocki, A. Task-independent EEG identification via low-rank matrix decomposition. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 412–419 (IEEE, 2018).

  • Wang, M., Hu, J. & Abbass, HA Brainprint: EEG biometric identification based on analysis of brain connectivity graphs. Pattern recognition. 105107381 (2020).

    Google Scholar article

  • Moctezuma, LA & Molinas, M. Multi-objective optimization for EEG channel selection and accurate intruder detection in an EEG-based subject identification system. Science. representing ten1–12 (2020).

    Google Scholar article

  • Alyasseri, ZAA, Khader, AT, Al-Betar, MA & Alomari, OA Person Identification Using EEG Channel Selection with Hybrid Flower Pollination Algorithm. Pattern recognition. 105107393 (2020).

    Google Scholar article

  • Yıldırım, Ö., Baloglu, UB & Acharya, UR A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural calculation. Appl. 3215857–15868 (2020).

    Google Scholar article

  • Wilaiprasitporn, T. et al. Affective identification of the person based on the EEG using the deep learning approach. IEEE Trans. To know. Dev. System 12486–496 (2019).

    Google Scholar article

  • Özdenizci, O., Wang, Y., Koike-Akino, T. & Erdoğmuş, D. Contradictory deep learning in EEG biometrics. IEEE signal process. Lett. 26710–714 (2019).

    Article on Google Scholar Ads

  • Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems, flight. 30 (2017).

  • Dosovitsky, A. et al. A picture is worth 16×16 words: Transformers for large-scale image recognition. preprint arXiv arXiv:2010.11929 (2020).

  • Liu, Z. et al. Swin transformer: Hierarchical vision transformer using staggered windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision 10012–10022 (2021).

  • Arjun, A., Rajpoot, AS & Panicker, MR Introducing the Attention Mechanism for EEG Signals: Emotion Recognition with Vision Transformers. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 5723–5726 (IEEE, 2021).

  • Lee, Y.-E. & Lee, S.-H. Transformer EEG: Self-attention transformer architecture to decode the EEG of imagined speech. In 2022 10th International Brain-Computer Interface (BCI) Winter Conference 1–4 (IEEE, 2022).

  • Tao, Y. et al. Gate transformer for decoding EEG signals from the human brain. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 125–130 (IEEE, 2021).

  • Song, Y., Jia, X., Yang, L. & Xie, L. Transformer-based spatiotemporal feature learning for EEG decoding. preprint arXiv arXiv:2106.11170 (2021).

  • Kostas, D., Aroca-Ouellette, S. & Rudzicz, F. Bendr: Using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data. Front. Hmm. Neurosci. 151–15 (2021).

    Google Scholar article

  • Bagchi, S. & Bathula, DR EEG-convtransformer for classification of visual stimuli based on single-trial EEG. Pattern recognition. 129108757 (2022).

    Google Scholar article

  • He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 770–778 (2016).

  • Ba, JL, Kiros, JR & Hinton, GE Standardization of layers. preprint arXiv arXiv:1607.06450 (2016).

  • Goldberger, AL et al. Physiobank, physiotoolkit and physionet: components of a new research resource for complex physiological signals. Traffic 101e215–e220 (2000).

    CAS PubMed Google Scholar

  • Schalk, G., McFarland, DJ, Hinterberger, T., Birbaumer, N. & Wolpaw, JR BCI 2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomedical. Eng. 511034-1043 (2004).

    Google Scholar article

  • Wang, M., El-Fiqi, H., Hu, J. & Abbass, HA Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in various human states. IEEE Trans. Inf. Forensic security. 143259–3272 (2019).

    Google Scholar article

  • Schons, T., Moreira, GJ, Silva, PH, Coelho, VN & Luz, EJ Convolutional Network for EEG-Based Biometrics. In Ibero-American Congress on Pattern Recognition601–608 (Springer, 2017).

  • Park, N. & Kim, S. How do vision transformers work? preprint arXiv arXiv:2202.06709 (2022).

  • Loshchilov, I. & Hutter, F. Regularization of decoupled weight decay. preprint arXiv arXiv:1711.05101 (2017).

  • Wu, Z., Liu, Z., Lin, J., Lin, Y. & Han, S. Transformer Lite with long-short range attention. preprint arXiv arXiv:2004.11886 (2020).

  • Wang, Y. et al. Evolutionary attention with residual convolutions. In International Conference on Machine Learning 10971–10980 (PMLR, 2021).

  • Harmony, t. et al. Delta EEG activity: an indicator of attention paid to internal processing when performing mental tasks. Int. J. Psychophysiol. 24161-171 (1996).

    CAS Google Scholar Article

  • Jann, K., Koenig, T., Dierks, T., Boesch, C., and Federspiel, A. Association of individual resting-state EEG alpha frequency and cerebral blood flow. Neuroimaging 51365–372 (2010).

    Google Scholar article

  • McFarland, DJ, Miner, LA, Vaughan, TM & Wolpaw, JR Mu and beta rhythmic topographies during motor imagery and real movements. Brain Topogr. 12177–186 (2000).

    CAS Google Scholar Article

  • Share.

    Comments are closed.